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This study focused on the target state estimator,

implemented as an extended Kalman filter, on the AFTI/F-16.

Several possible reasons for the poor performance it exhibits

are investigated; the major reason for this poor performance

is shown to lie chiefly with the conventional covariance

update techniques it uses. Others have shown that the

recursion equations which use conventional update techniques

are numerically unstable; because alternatives exist, the

conventional updates should never be used.
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AFIT/GE/ENG/87D-44

Abstact

The purpose of this study was to investigate target

state estimation techniques for the air-to-air mode of the

AFTI/F-16 automated maneuvering and attack system. The

target state estimator (TSE) previously developed would not

perform to specifications; possible reasons for this poor

performance are presented as well as suggestions to upgrade

the performance.

The TSE exists as extended Kalman filter equations in a

digital computer. The previously developed Kalman filter

equations used conventional covariance update techniques and

a Gauss-Markov system dynamics model which expressed the

states in an inertial reference frame. Measurements were

performed in the line-of-sight (LOS) frame, but the

covariance matrix was not rotated into the LOS frame during

update. This study focused on three areas: (i) Determine if

the Gauss-Markov dynamics model was adequate for the tracking

accuracies specified. (2) Determine if a rotation had to be

performed to account for the states being expressed in one

frame while the measurements were physically made in another.

(3) Determine what effect the conventional covariance

updates, coupled with the short (16-bit) wordlength of the

*TSE computers, has on the stability of the Kalman filter.

.. Two filter dynamics models were designed, tested, and

compared. The first model used complex equations and closely

modeled an air-to-air engagement. Most of the complexity of

vii



the model was maintained in its Implementation., and It was

used as a baseline model. The second filter used a Gauss-

Markov dynamics model and made several assumptions to

* simplify computations.

Analysis of filter performance revealed that the Gauss-

Markov filter dynamics model was, Indeed, an adequate model.

* Also, the covariance matrix does not have to be rotated into

the LOS frame If the measurements are redefined. The second

* filter was then implemented using U-D covariance

* factorization algorithms, but the time propagation routines

used were apparently flawed. However, the poor performance

of the TSE is no doubt caused by the conventional Kalman

filter recursions, as they are inherently unstable.

0
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IMPLEMENTATION OF A TARGET STATE ESTIMATOR FOR
THE AIR-TO-AIR ATTACK MODE OF THE AFTI/F-16

I. Introduction

The Flight Dynamics Laboratory (AFWAL/FIGX) is

evaluating software for the Automated Maneuvering and Attack

System (AMAS) for the Advanced Fighter Technology Integration

AFTI/F-16 aircraft. The AMAS uses integrated fire/flight

control (IFFC) techniques to track a designated target,

calculate a flight condition from which a released weapon has

a high kill probability, maneuver the aircraft to that flight

condition, and release the weapon [2].

The AFTI/F-16 is capable of attacking ground as well as

airborne targets; the AMAS should automate an attack against

either. Because target maneuverability has a large affect on

the tracking system's capabilities, the AMAS is subdivided

into three modes: a stationary ground target mode, for use

against structures or other non-mobile targets; a mobile

ground target mode, for use against moving vehicles; and an

airborne target mode, capable for use in an air-to-air

engagement. The ground modes of the AMAS are currently

implemented in the AFTI/F-16. However, the airborne mode is

still under evaluation, partly because the AMAS tracking

function does not always perform with the precision required

to obtain a gun firing solution (2,10].
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The AMAS tracking function consists of sensors, which

detect the relative position and velocity of the target, and

a target state estimator (TSE), which estimates current

target states. The sensors are a forward-looking infrared

(FLIR) imaging system and the inertial navigation unit (INU)

for angle measurements, a laser range finder, and the APG-66

radar for range rate (Doppler) information. The TSE consists

of an extended Kalman filter (EKF) algorithm Implemented in a

digital computer. The EKF calculates optimal (as described

below) estimates of current target states (10].

The Fire Control Computer (FCC) performs the AMAS

function of calculating the desired flight profile. A

discussion of the algorithms used by the FCC to compute the

to desired flight profile is beyond the scope of this thesis.

However, the knowledge that the FCC must be able to predict

the target position and velocity at a specific time In the

future implies that the target states must include position,

velocity, and acceleration. To ensure that body rates do not

influence the target states, the target states are expressed

in an inertial Cartesian coordinate system. Therefore, the

states estimated by the TSE are relative (target with respect

to attacker) position, relative velocity, and total target

acceleration expressed in an inertial Cartesian coordinate

system (101.

The TSE uses an EKF to combine the measurements

available from the sensors with a target dynamics model to

generate the state estimates given above. These state

2
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S. A estimates are the best estimates possible if the model used
..

in the filter adequately represents the real world system and

the variances used in the filter are truly representative of

the variances in the real world system [4:4].

Theoretically, linear Kalman filters provide the best

state estimates possible if the conditions described above

are met; however, the algorithms for their implementation may

not be numerically stable. This numerical instability is

also apparent for some implementations of EKFs. In fact, the

finite wordlength of digital computers may make the

recursion equations of the Kalman filter diverge, as they do

for certain conditions of the currently implemented AFTI/F-16

TSE [2]. The divergent effects of finite wordlength may be

reduced by increasing the wordlength of the computer or by

modifying the recursion equations which comprise the Kalman

filter [4:368]. Computer wordlengths are difficult to

change, whereas the recursion equations in software are

readily modified. Possible modifications to the recursion

algorithms are discussed further in Chapter II.

1.2. Problem Statement

The EKF currently implemented in the air-to-air mode of

the AFTI/F-16 TSE diverges for certain attack geometries,

causing the AMAS to break off the attack (2]. The specific

geometries where the divergence occurs were not available to

the researcher, but two possible causes for this divergence

*. *.*.." are addressed by this research. First, the current EKF uses

3



standard covariance matrix update equations, which have been

* ' shown to be numerically unstable [1:338]. A modification to

the EKF recursion algorithms is proposed by this thesis to

eliminate, or at least significantly reduce, this problem.

Second, the measurement covariances are known only in the

line-of-sight (LOS) frame while the target states are known

in the inertial frame. Consequently, a change of reference

frames must be accomplished before the states and covariances

are updated, but this is not done in the current TSE (10].

The rotation matrix to accomplish this change of reference

frame and its use are discussed further in Chapter II.

1.3. S Limitations

This thesis develops an EKF based upon the model used in

the current AFTI/F-16 TSE and compares it to an EKF based

upon a more complex model. The filters developed herein use

numerically stable update algorithms, reducing or eliminating

divergence due to the digital computer's finite wordlength.

Several simplifying assumptions are made which significantly

reduce the complexity of the development, as discussed below.

The first assumption is that the measurement coordinate

frame (the LOS frame) is assumed to be inertially space-

stabilized during the measurement. While this is not

generally true of AFTI/F-16 hardware (10] (the sensor head

rotates with the relative target position, as explained in

Chapter I), any rotation is assumed to have second or higher

order effects on TSE performance. This assumption eliminates

the requirement to calculate Coriolis acceleration effects on

4



* .~... the measurement; instead, errors introduced by Coriolis

accelerations are assumed to be negligible compared to the

dynamics noise models of the EKFs.

The next assumption is that the attacker's position,

velocity, acceleration, and attitude are available from an

inertial navigation unit (INU) without error. This

assumption is made because current INUs have errors much

smaller than the errors expected from the TSE [8:4). Also,

because any INU errors are also present In fire control

computer calculations, the overall effect of INU errors on

the AMAS solution is reduced [101.

Another assumption is that the parallax errors which

occur because of the physical separation of the STS and the

INU are negligible compared to other system errors. This is

Justifiable because the separations are small (less than 10

feet) '10].

A further assumption is that the earth-fixed (inertial)

reference frame has its positive axes oriented in the local

north, east, and down (towards the center of the earth)

directions. The origin of this coordinate frame Is fixed at

the center of gravity (cg) of the attacker at the Instant

target designation takes place (when the TSE Is at time

zero).

The final major assumption is that the attacker Is

benign; I.e., the attacking aircraft does not maneuver. This

assumption Is made to simplify the Implementation of testing

routines. Formulating a complete model of the AFTI/F-16

5
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control system and aerodynamics requires more time than is

available to complete this thesis, and the TSE relies on

other aircraft systems only for input of data. Further, the

* TSE does not directly control any aircraft function.

1.4. Eguipment U±

Each of the Kalman filter implementations investigated

in this thesis is evaluated by means of software written for

this purpose, the Simulation for Optimal Filter Evaluation

(SOFE) and associated plotting post-processor (SOFEPL)

routines [6,7]. Each of these tools are available on the

AFIT/ENG ELXSI computer. A brief discussion of the

evaluation process follows; a more detailed description of

SOFE and SOFEPL Is presented in Chapters II to V.

SOFE is an EKF evaluation tool which was written to

test the effects of varying the parameters or equations which

comprise a given Kalman filter. Written in FORTRAN, SOFE

consists of a set of fixed subroutines that exercise the

filter and a set of user-defined subroutines which define the

particular filter to be tested. A set of input parameters is

varied for input/output control and filter functioning,

depending on the data required and the filter parameters

desired to be tested. SOFE then performs the number of Monte

Carlo runs specified by the user and generates any output

files requested for later evaluation [6].

SOFEPL is a plotting postprocessor for SOFE. When SOFE

has generated time history data files for the number of

Jv



specified Monte Carlo runs, SOFEPL generates plot files for

All the types of plots requested, based upon ensemble averages

across all the runs [7].

1 .5. organization

A more in-depth coverage of AFTI/F-16 AlIAS concepts and

a brief presentation of the extended Kalman filtering

techniques used in this thesis are provided in Chapter II.

Chapter III develops a constant turn rate (CTR) EKF as a

baseline model for the TSE. A Gauss-Markov (GM) acceleration

EKF is developed in Chapter IV, as is the U-D factorization

implementation of the GM filter. Results of Monte Carlo 1

simulations and an analysis of the filters is accomplished in

Chapter V. Chapter V also presents the conclusions of this

study and recommendations.

7S
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I Review of Current Knowledge

[2.1 Introduction

This chapter presents a discussion of the portion of the

AFTI/F-16 aircraft relative to this thesis, including sensors

and the digital flight control system (DFCS). The concept of

integrated fire/flight control (IFFC) systems is explored,

and the EKF is introduced as the target state estimator (TSE)

for the IFFC. The reader is expected to have a background in

stochastic processes and Kalman filters (estimation theory);

for a rigorous development, see Reference 4. This chapter

concludes with a discussion of the algorithms used in this

thesis to implement the Kalman filters.

2.2 AFTIZ-1 Aircrat

The AFTI/F-16 is a modified F-16 fighter aircraft which

tests the integration of new technologies into fighter

aircraft. These modifications allow the AFTI/F-16 to have

much greater flexibility than conventional aircraft to

perform its role as a testbed for new technology [2].

One obvious modification is the addition of two vertical

canards to the front underside of the airframe (see Figure

1). These vertical canards provide aerodynamic control

surfaces that allow the AFTI/F-16 to perform such maneuvers

as direct side force and vertical lift without pitch

maneuvering (10].

8
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Another feature of the aircraft is its total fly-by-wire

... control system, which uses triply-redundant digital computers

to perform all flight control and fire control system

functions. Changing system responses, aircraft

configuration, or mission capabilities is accomplished by

modifying the programs which run on the system computers (2].

N- ~ 2 2.1.L.I .Zx"

Sensors for tracking a target include the APG-66 radar

system, the Sensor/Tracker Set (STS), and the pilot. For

purposes of this thesis, the pilot is not included as a

sensor.

The APG-66 radar system uses an integral Kalman filter

to predict future target position and rates. This Kalman

filter uses an inertial Cartesian coordinate frame to express

the states of relative target position, relative target

velocity, and total target acceleration; i.e., the radar

states are

-wer (2-1)

AT

where

E is the (relative) target position vector,

is the (relative) target velocity vector,

& is the target acceleration vector, and

T indicates total (inertial) quantities

as expressed in inertial (e.g., North/East/Down) coordinates.

10



Unfortunately, target state estimates from the radar are

considered to be too noisy and inaccurate to be used for

accurate gun pointing [10]. In fact, the least significant

bit of the radar target position estimate represents 16 feet

(101 (Note the performance of the STS later in this section).

The STS consists of sensors and a digital computer

dedicated for its use to compute target position, velocity,

and acceleration; i.e., as a target state estimator. The

sensors are a FLIR and laser ranger which share common optics

to eliminate sighting errors. The TSE currently employed in

the STS is implemented in the same inertial Cartesian

coordinate frame as the TSE for the radar and uses the same

states as the radar (given in Equation (2-1)) 110).

Besides being used by other on-board computers (as

described below), TSE target states are used to generate rate

aiding commands to keep the FLIR/tracker head pointed at the

target during target maneuvers. Target position states in

the TSE have an accuracy specification of two feet (one-

sigma). This accuracy ensures that the fire control

computers can reliably predict future target position (10].

When a target is designated by the pilot, the radar

system's target states and covariances are provided to the

STS, which then begins tracking. Data from the INU are

available directly to the TSE, and the TSE bases its updates

on a "snapshot" of all sensor data. The update, then,

carries a time tag so any computer on the aircraft can tell

• "-. the precise time of the most recent update. This is

'



important because the TSE updates at a 30 Hertz rate (limited

by the FUIR scan rate) while all other computer systems on

the aircraft operate at a 50 Hertz update rate [10].

The digital computers on the AFTI/F-16 perform all

flight control and fire control functions. Figure II depicts

the interaction between various components of the digital

flight control system (DFCS). All sensor data are digitized

and sent to one or more digital computers for processing.

The flight control computers convert flight control commands

to control surface commands so that the aircraft performs as

* desired [10).

when weapons were first carried on board aircraft, the

* pilot (or gunner) was the sensor, data processor, and

controller for pointing and firing the weapon. Lead angles

* for pointing the aircraft or gun were computed by the pilot

* (or gunner) during the engagement, and were limited by his

experience and reaction time. To aid the pilot in deciding

when to fire and how to fly the aircraft, target and bullet

prediction algorithms such as the lead-computing sight and

the tracer algorithm were developed. The IFFC aids the pilot

even more, by automating aircraft maneuvers and gun control

commands. The aircraft positions itself (via the IFFC

system) and fires the gun at the target designated by the

pilot when an acceptable probability of kill exists (91.

12
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In order to point the aircraft properly, the IFFC system

computes bullet and target position one bullet time-of-flight

(TOF) into the future. Corrections to the aircraft flight

path are then computed to put the bullets on the target at

the end of the bullet TOF. Future bullet positions can be

found by using bullet trajectory algorithms or by integrating

the bullet dynamics equations. Future target position can

also be determined by integrating the target dynamics

equations forward to the end of the bullet TOF (10].

In order to predict the future position of the target

accurately, the IFFC system needs an accurate estimate of

present target states. In the AFTI/F-16, this target state

estimation is accomplished with an EKF in the STS [10]. This

- EKF is the subject of this thesis.

2. Kalman Filins

This subsection presents the EKF equations applicable to

this thesis, and illustrates why the conventional covariance

updates are inadequate for small wordlength computers. An

alternate covariance update algorithm, U-D factorization, is

presented and used to implement a proposed EKF for this

research. This subsection concludes with a discussion of the

difference between the measurement frame and the state

estimate frame used in the EKFs of this thesis.

14
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The EKF equations for propagation and update (5:43,44]

are presented below. For a full derivation of these

equations, see references 4 and 5.

Assume that the system of interest is described by a

stochastic process whose dynamics model is

- (t) = L[u_(t),ut),t] + G(t)w(t) (2-2)

where

j[.,s,'] is a (possibly nonlinear) function of the

state estimates, inputs, and time,

2(') is the estimated state n-vector, and 2(to) is
modeled as a Gaussian random n-vector with mean o and
covariance Po,

1(*) is an r-vector of known input functions,

. G(s) is an n-by-s measurement noise input matrix,

and

y.(*,.) is a zero-mean white Gaussian s-vector
process independent of (to) and of strength Q(t),i.e.,
E{w(t)YT(t+,r)} = Q(t)d(t)

and the sampled-data (discrete-time) measurement is modeled

as the m-vector process

7,(t ) =),t I  + Y(t (2-3)

where

h(.',) is a (possibly nonlinear) m-vector function
of the states and time, and

Y-(',*) is a zero-mean white Gaussian m-vector
process, independent of Z(to) and ( and of
covariance R(t ).

i

For propagation between measurements, the following two

equations are integrated forward in time:

15
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1 1. 1(t t1),u(t),t] (2-4)
i5(tIt ?t-(tt )]HP(tlt ) + P(tlti)F T Itz( tIt )

+ G(t)Q(t)G T(t) (2-5)

where

F(',') is defined to be the n-by-n matrix of partial
derivatives,

F I (2-6)
_~t] I=.(t I t.)

For measurement update, the measurements z(ti) are

incorporated by the equations

K = P-H TCHP-H T + R-I1  (2-7)

= + K{z.(t i ) - h(t),t N (2-8)
i 1

*P+ P- -KHP- (2-9)

where

H is defined to be the m-by-n matrix of partial
derivatIves,

6 hjx,t 1 )

H (2-10)

z(tt) is the measurement vector from sensors in actual
applications or a truth model of the system for simulation
evaluation,

and the time arguments have been omitted for clarity
(P-= P(tV), etc.].

Equation (2-7) calculates what is commonly called the

Kalman gain of the filter and the term in braces ({}) in

Equation (2-8) is termed the residual. Equation (2-9)

performs the conventional covarlance update.

16
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Note that a matrix inversion is required to calculate

the Kalman gain in Equation (2-7). For a matrix to be

invertible, its determinant must not be zero (the matrix must

not be singular). If computers had infinite wordlength, this

would not be a problem, because the first term (HP-HT) is

guaranteed to be at least positive semidefinite while the

second term (R) is guaranteed (by definition) to be positive

definite (4:216]. However, when a computer with a finite

wordlength (as all digital computers are) is used, the filter

may diverge or totally fail. Maybeck states:

For instance, although it is theoretically impossible
for the covariance matrix to have negative eigenvalues,
such a condition can, and often does, result due to
numerical computation using finite wordlength,
especially when (1) the measurements are very accurate
[eigenvalues of R(ti ) are small relative to those of
P(tl), this being accentuated by large eigenvalues in
Po] or (2) a linear combination of state vector
components is known with great precision while other
combinations are nearly unobservable... (4:3681.

In general, updating the covariance matrix usually

requires at least double precision arithmetic (4:368]. Even

double precision arithmetic does not guarantee stability of

the Kalman recursion equations; in fact, the conventional

Kalman filter equations have been shown to be inherently

numerically unstable (1:3381.

Various alternate recursion relations have been

developed which are inherently stable. Notable among these

are various square root forms and U-D factorization

algorithms (4]. The concept of the square root forms is to

propagate and update the square root of the covariance

17



I matrix. Such a technique can yield twice the effective

precision of the conventional equations in ill-conditioned

problems, or the same accuracy with about half of the

wordlength required for the conventional equations [4:369].

More importantly, the square root forms have been found to be

numerically stable (1:338]. The U-D factorization form

shares these desirable attributes, and has the added

advantage that computationally time-consuming square roots

are never explicitly evaluated (4:392].

2.4.3. U-Q Factorization

The U-D factorization method expresses the covariance

before and after update at time tL as

P(t-) = U(t-) D(t-) UT(t ) (2-11)

P(tt) = U(tt) D(t+) uT (tt) (2-12)

where

U(') is an upper diagonal, unitary matrix; i.e., all
elements below the main diagonal are zero and all
elements on the main diagonal are one, and

D(,) is a diagonal matrix; i.e., the only nonzero

elements are on the diagonal.

The computations In Equations (2-11) and (2-12) are not

actually accomplished; rather, algorithms are used to compute

X, U, and D directly Instead of X and P.

Although the U and D matrices are not unique, a uniquely

defined pair can be generated algorithmically. Several

methods exist to generate the n-by-n U and D matrices; one

such method (4:3921 is presented below:

18
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First, for the n-th column

D = nn

0 n

Ui n = I n 
(2-13)

PIn/D I = n-i, n-2, ... , 1

Then, for the remaining columns, for J=n-1, n-2, ... , I

-- 2

D P k 1 DkkUjk = n

ii LD. i=ji .,i.

iin
(2-14)

0 > j

U = i=:j

D+ Dkk Uik Ujk) /D. I j -1, ,1

Equations (2-13) and (2-14) are normally used only for

initialization of Uo and Do; propagation and update

algorithms (such as those below) compute U and D factors.

Measurement update using the U-D factorization filter is

first presented for the scalar case (4:394], then generalized

to the vector case below.

For a scalar update, compute

T T
f = U (t:.H (t

I- i
vj = Dj (ty)fj j=1, 2, ..., n (2-15)

ao=R .

Then, for k=1, 2,..., n, calculate
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ak =ak-1 +fvk

D (t') = D (t)a /akk I kk i k-i k
bk <-- Vk (2-16)

P= fk /ak-

Ujk(t ) = U jk(tI) + bjpk
b - b U (t)v j=l, 2, ... , k-i

j k I k

where <-- denotes replacement, or 'writing over' old

variables for efficiency.

Vector measurement updates are processed component by

component, assuming the R matrix is diagonal (if the R matrix

is not diagonal, a transformation of variables is required so

that it is made diagonal; the diagonal requirement is

discussed further below) (4:394]. When U(t) and D(t) have

-°-O - been calculated, the Kalman gain can be calculated from

K(t ) = b/a (2-17)

and the states updated using Equation (2-8) [4:394].

Time propagation of the U-D factors involves many

concepts that are beyond the scope of this thesis. One

method for time propagation of U and D is [4:396-3971:

Form the matrices Y(t+) and Q(t+) by augmenting:
1+1 1+1

Y (t [ +I  = [ (t i +l 't i ) U t il)  G G (t i) (2 -1 8 ).
i+1 i1 I d I

D(t*)l 0

P=t (2-19)
1+1 0 1 1d(L Qd(ti)
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-I:

where

1+' (t ,t ) is the state transition matrixI+1 1

which propagates the states forward in time from t
to t 1+1"

G is the n-by-s discrete time noise input
matrix, and

id Is the s-by-s noise matrix which has
statistics identical to Q at the discrete sample
times (4:171]:

t i+T

ad ¢( , ( ( T ( r1 ( t i+l, -Y)d r (2-20)

t
i

Then, Initialize n vectors, each of dimension (n + s),

through

T
I S 1 1 S2 1 ... 1 n J Y yT(t *+ ) (2-21)

and iterate on the following relations for

k=n, n-1, . .. , 1:

(ckj = .jj(t+ll)akj, j=l, 2, ... , n+s}

D k (t 9 T
kk i+1 k-

-k = Sk/Dkk(ti+ 1  (2-22)

U (t- S1 T=jk i+l i k J=1, 2, ..., k-i

4- - Ujk(t i+l)sk

Again, +- denotes 'writing over' old variables. The

state estimate is given by

X(t.7+ 1  = ((t ,t. )(t!) + Bd (t )SL(t ) (2-23)~* *:-i+1 i+.]. 1 2. d . 2
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where

B d is the discrete-time input matrix, defined

by [4:171]

f ti+ 1

Bd t j(t i+l,)B(r) dr (2-24)

tt

2.4.4. R n Frames.: es1ursemen State

Whenever two quantities are summed they must be

expressed in the same reference frame for the sum to be

valid. However, in Equation (2-7), the quantities utilized

by the STS are expressed in two different coordinate frames.

The TSE states and covariances are expressed in the inertial

reference frame, while the measurements and their variances

are known only in the LOS frame. If the frames are closely

aligned at a given time (i.e., the sensor head is pointed

along the "north"-axis of the inertial frame), the variances

along each axis are nearly the same in either frame (8:40].

However, since the reference frames are not generally

aligned, the covariances expressed in the LOS frame is skewed

in the inertial frame (see Figure 2.3 for a simplified

example). Therefore, a change of reference frame must be

performed for each update cycle [91. This change of frame

may take one of two forms:

(1) The covariances and state estimates are rotated from

the inertial frame into the measurement frame after

propagation to ti but before measurement update at ti . This

rotation, as used in this thesis, is based upon an Euler

22
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Covar lance

X I

Figure 3. Covariances in Two Reference Frames

angle transformation developed in Appendix A (8). The

covariances and state estimates must then be rotated back

into the inertial frame after measurement update for normal

propagation, as in Equation (2-5).

0
(2) The measurement noise matrix R is rotated from the

LOS frame into the inertial frame before measurement update

occurs.

The first option above involves the use of two matrix

transformations. Because the transformations are inverse

(and transpose) operations, calculations can be greatly

*. simplified, as shown in Chapter III.

The second option involves only one transformation, at

first glance. However, after a diagonal R matrix is rotated

into the inertial frame it would not, in general, be

diagonal. Since vector updates in the U-D factorization

algorithm require the R matrix to be diagonal, a change of

variables would have to be done to accommodate the update

algorithm. These additional rotations are exactly the

23



rotations required in the first option above; therefore, the

method shown in the first option is used in this thesis to

rotate the covariances and states during update.

2.4.5. EIJI.= Implementations

Several models have been used in the literature to

represent target motion in an air-to-air attack scenario [8].

Several models use various techniques to calculate the

acceleration state as a function of time and integrate

successively to obtain the velocity and position. The states

themselves may be expressed in a variety of reference frames.

One such model is the Gauss-Markov acceleration inertial

coordinate (GM) filter. In the GM model, the accelerations

• are calculated using a first-order Gauss-Markov acceleration

model, but do not account for persistent (non-zero mean)

accelerations. Although the GM model does not reflect the

real-world system with great accuracy (8:17], the GM filter

has the advantage of linear dynamics.

Another candidate model is the constant inertial target

turn rate constant-speed inertial coordinate (CTR) filter.

In the CTR filter, the accelerations are calculated based

upon a constant speed target going through a constant turn

rate, planar turn. The acceleration model of the CTR filter

approximates actual target accelerations more closely than

the GM filter (8:3,22], but the dynamics model is nonlinear,

as is shown in Chapter III.
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Because the CTR filter more accurately models an aerial

engagement, it Is used as a baseline model for this thesis.

However, due to Its complexity, the CTR filter Is impractical

for use in the TSE. The equations involved in propagating

and updating the states and covariances require much more

time and memory in the CTR filter than in the GM filter, as
.

'p.

is evident from the dynamics models of the filters (see

Chapters III and IV). For this reason, a modified form of

the GM filter is developed in Chapter IV of this thesis as

the proposed model for the TSE.

This chapter presented a brief overview of AFTI/F-16

systems and IFFC concepts to motivate target state estimator

implementation on this aircraft. Also, the Kalman filtering

techniques presented are used as tools for implementing

target state estimators in the next two chapters.
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.I
.2' LiL8  Constant TurnJ Rate Filter

3.1. Introduction

The constant turn rate (CTR) EKF is presented In four

parts in this chapter. These four parts are the dynamics

model, the measurement model, the noise models, and specific

implementation on SOFE.

The CTR filter is a complex filter (as is shown below)

which closely models the real-world system (8]. Because the

CTR filter so closely models the real-world system, it is

used as a baseline filter for comparison purposes and few

simplifying assumptions are made to reduce Its complexity.

Filtr DyaisModel

Implementation of the CTR filter dynamics model involves

the evaluation of the f, and W vectors and the G matrix of

Equation (2-2). The x vector (the estimated target state) is

defined by Equation (2-1), expanded for clarity:

1

x 2

44

" = (3-1 )x = 5

6

7

8

9
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where

"r' x1 x2, and x3 are the relative target

positions along the 1, 2, and 3 axes, respectively, of
the inertial coordinate frame (e.g., North, East, and
Down),

4  , and are the relative target

velocities along the 1, 2, and 3 axes, respectively, of
the inertial coordinate frame, and

x 7 , x^, and x are the total target

accelerations along the I, 2, and 3 axes,
respectively, of the inertial coordinate frame.

The differential equations describing the position

states as a function of the velocity states are written as

ii 2= ' (3-2)

2 ' 5  (3-3)
2 = x 5

(34

The differential equations describing the velocity

states as a function of accelerations are written as

X =x - a (3-5)X4=7 1

= X8 - a 2  (3-6)

x 6 = x 9 - a3 (3-7)

where a,, a2, and a3 are the accelerations of the
attacker along the 1, 2, and 3 axes, respectively, of
the inertial coordinate frame.

The differential equations describing the acceleration

states are written as

47

X -II (x5 + V) + w-8  = -- _i 2 (' x 5  + v 2  + w2  (3-9)

92(ix + v 3 ) +w 3  (3-10)
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.- where

VI P V2 , and v are the velocities of the attacker,

provided by the IN8, along the 1, 2, and 3 axes,
respectively, of the inertial coordinate system (thus, x,+vj

-is the total target velocity in the J-direction),

w , w 2 , and w 3 are zero-mean, white Gaussian noises,

Independent of each other and of X, and

the term IllW2 is the square of the magnitude of the
angular velocity, calculated as

A 2  +A2 +A2
i i,2 +A +A 3  (3-11)

2A4

where

A1 = (x5 + v2)9 - (k6 + v 3 )'8 (3-12)

AI = (X6 + v3) 7 - (X4 + VI)k 9  (3-13)

A4 = ( 4+v) + (+V + (+V (3-15)

The dynamics equations for each of the states are

expressed in matrix form as

-~ 0
4

0
5

0
6

AX- a 0
A7 1

' 8 a+ 0 (3-16)8-a 2

x 9 - a 3  0

-Ilw.H2(x 5 +v 2 1  w2
2( 6 + v3) 3
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which is in the form of Equation (2-2). Using Equation

(3-16), the partial-derivative matrix F is (see Equation

(2-6))

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

F = 0 0 0 0 0 0 0 1 0 (3-17)

0 0 0 0 0 0 0 0 1

0 0 0 F1  F2  F3  F4  F5  F6

0 0 0 F7  F8  F9  F1 0 Fl1 F12

0 0 0 F1 3 F1 4 F1 5 F1 6 F1 7 F1 8

where

/ 4 )A( x-: 9 -2A
41 =-( ;U (+ 2+ 2 4A

(3-18)

^ 2+A 2A 2
20?4+v ) A (A 9-A x"7 ) - 2(A +A 2+ +

F4 1 4 1 9 3 7 1 2 3  ( 5 2

A4
(3-19)

2('4+v+ H A (A7-A') - 2(A2 +A 2 +A 2 (k +V
F3  - 42718 1 2 3  6 v 3

A4
(3-20)

24 4vi)[ A2 (26 4v 3 ) - A3 ( 54-v2 )

F4 = A 2 (3-21)4.:-. A 42
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2(._,_ A+(XA+VA +
F 4 1 3 ( 3-22)

5 A 2
A4

2(A +V I )  1 AI ( x5 + V 2  A 2("%4 + v )
F6 - + 2 (3-23)

A4

2C~v~A(~-?)2( 2  2 2
52438291--' A ,)2( +A2 +A3 )xV H1 )

F7  = - 2 -" (3-24)
A4

2 (A (A1 ' 9 -A3  -(A2 +A 2 +A2 )( 6v3 ) ]
2 + A(A+2) 4 1)2 3 ( 5A ) - 2 )2 A

3
2 2 2

F( 5- 5 +v 2 H A 4 (A 2 x7 A 1x8  - 2(A 1 +A 2 +A 3 )(X"6 +V) 3F9 A3
A4  (3-26)

2(X 5 +v2)( A2 (x 6 +v3) - A3 ( 5 +v2)
F1 0

= 
- 2 (3-27)

A4

2(^x5 +v2 )( A3 (X4+Vl) - A1 ( 6+vV3) ]
FII=- A. ,. (3-28)

2( 5 +v2 )[ Al( 5 +v2 ) - A2 ( 4 +Vl) 1]3-9

FI2= - 2 2-22

A4

2(x 5+V3)[A 4 (A3x 8 -A2 9 ) - 2(A1  A A 1

*F 1 3 -- 3..

133

A4  (3-30)

2(X +.V3 [ A (A1 29 -A3 ) - 2 2A 2A)''+

F 6 3 219(A71  A2  + 3  5 2
A4 (3-31)

30-S.
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2 2 2
F1 5 = ,(,,2 + 2(X6 +V3 )[A4 (A2 X-A x8 )-2(A 1 +A + (6+v3
F 15=2 +

4  (3-32)

2( 6 -V3 )( A2 ( 6 +v3 ) - A3 (25 +v2 ) 1

6= A 2
A4

2(26 +V 3 )( A3 (X4+Vl) - A1 (X6 +v 3) (
17 - 2

A4

2(X 6 +v,)( A I('5 +v2 ) - A2(X 4+Vl) 1
F - " _ (3-35)18 A42A4

Note that the 11 vector of Equation (2-2), the velocity and

acceleration of the attacker, is imbedded in Equations (3-16)

and (3-17). Also, the product of G and w is given as the

last (column) vector of Equation (3-16).

3.3. Measurement E

Four measurements are available from the STS. Each

measurement is discussed below as it relates to the states,

then the H matrix of Equation 2-10 is presented.

3.3.1. Rnge Measurement

A laser range finder in the STS provides the range

measurement. The range, expressed in the LOS coordinate

frame, is computed as the time required for a pul-ed beam of

light to travel to the target and back, divided by twice the

speed of light. The laser ranger in the STS has a range

accuracy of 2.2 meters (one-sigma) (101. From spherical
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* geometry, the range to the target Is expressed as the square

root of the sum of the squares of the relative position

states in either the inertial or the LOS coordinate frame;

i.e., using state variables,

R (#2+ 5?2 + _k2 ) (1/2) (3-36)1 2 3

3..2 Veoct Measurement

The relative target velocity along the LOS is measured

by the APG-66 radar system by measuring the Doppler shift of

* the pulse of electromagnetic energy reflected from the

target. The accuracy of the velocity measurement furnished

* by the radar system Is one foot per second (one-sigma) (101.

* The velocity measurement as a function of the states is

* computed, In either the inertial or LOS coordinate frame, by

forming the dot product of the relative position and relative

velocity vectors:

V = (E_ Y ) /R (3-37)

where

V is the (signed) scalar relative velocity,

ais the relative position vector,

"S

(3-38)

yis the relative velocity vector,

'24 (3-39)

-and R Is the range to the target, defined by
*Equation (3-36).
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Equation (3-37) is written using state variables as:

V ('X 42 1~ + i / R (3-40)

3.3.. Measurements

The FLIR in the STS provides a measurement of angular

errors with respect to the boresight of the FLIR head. The

boresight, or sensor head position, angles with respect to I

the aircraft body are known from position sensors in the STS,

and the INU provides aircraft attitude data directly to the

STS. Therefore, all angles between the inertial frame and

the LOS frame are known when a sample occurs, and the azimuth

and elevation angles from the attacker to the target are

calculated as a 'snapshot' of these angles. The STS measures

the azimuth and elevation angles with a precision of 1.13

milliradians (one-sigma) (10]. This figure includes all

error sources: INU measurement errors, sensor-head alignment

errors, FLIR pixel errors, etc. [10]. The angle measurements

are generated from the state estimates by rotating the state

estimates into the sensor reference frame and comparing

angular distances, as explained below.

Figure IV describes the angle relationships present

during a measurement. The Euler angle relationships are

developed in Appendix A; the matrix which rotates quantities

from the inertial frame to the LOS frame is
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T'T T 1 1

TL  T21 T22 T 2  (3-41)

T31 T32 T 3

where

T = cos cos * cos a cos 0 - sin 0 cos * sin a

- sin 0 cos a sin 0 (3-42)

T = cos 0 cos * sin a cos 0 + sin 0 cos * cos a

- sin 0 sin a sin 0 (3-43)

T = -cos 0 cos 0 sin 0 - sin * cos 0 (3-44)

T21= -sin 0 cos a cos 0 - cos 0 sin a (3-45)

T22 = -sin 0 sin a cos 0 + cos 0 cos Ot (3-46)

T = sin 0 sin a (3-47)

31 = cos 0 sin 0 cos ot cos 0 - sin 0 sin 0 sin a31

+ cos 0 cos at sin 0 (3-48)

T32 = cos 0 sin 0 cos 0 + sin 0 sin * cos a

+ cos 0 sin a sin 0 (3-49)

T = -cos 6 sin 0 sin 0 + cos 0 cos 0 (3-50)

where

0 is the first Euler angle from the inertial axes
to the body axes (the 'azimuth' of body attitude),

0 is the second Euler angle from the inertial axes
to the body axes (the 'elevation' of body attitude),
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a is the first Euler angle from the body axes to
the sensor-head axes (the azimuth angle of the sensor
head relative to the body), and

0 is the second Euler angle from the body axes to
the sensor-head axes (the elevation angle of the sensor
head relative to the body)

as defined in Appendix A.

The position state estimates are rotated into the sensor

frame by

= L ,J
LX j

and the tangents of the azimuth and elevation angles

calculated as

0 tan (a) = i /.' (3-52)2 1

tan (e) = / (3-53)

Note that there is no need to correct the tangent function

for a negative term in the denominators of the last two

equations; the denominators in either equation cannot be

negative if the sensor is tracking the target within 90

degrees. The tracker should, in fact, be pointing (tracking)

the target within a few tenths of degrees, if operating

properly.

3.-4 Thr, Measurement Matrix

To form the measurement vector, b(R,,t), of Equation

(2-3), Equations (3-36), (3-40), (3-52) and (3-53) are

''. combined:
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Eq. (3-36)

Eq. (3-40)
h. = (3-54)

Eq. (3-52)

Eq. (3-53)

Evaluation of the partial-derivative matrix, H, of

* Equation (2-10), Is straightforward for the range and

velocity measurements. However, the transformation In the

* angle measurements Is a function of the position states, and

* a fully developed H matrix requires partial differentiation

of terms of the rotation matrix TLI with respect to the state

* vector. The terms Involving differentiation of the rotation

matrix are assumed to be small compared to the remaining

0- terms, thus avoiding this differentiation and the resulting

filter complexity. This assumption has been shown (8:52] to

*be valid. The H matrix is thus computed as

H H 2H 30 0 0 0 0 0

H~ H H H H H 0 0 0
H 6 H7  H8  H9  03-50

H10 H10 0 0 0 0 0 0J
H 12 0 H13 0 0 0 0 0 0

where

H1 (3-56)

H = R.3-57)2 x2 R

H R(3-58)3 3

'-.*~2* ^ L 3-L .L -.
H4 [R X-x 4~' (X 4 x1 +X 5 X 2 +X6 3 J 1  R (359
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H7 = / (' 4x +5 2 + )X 2 R (3-60)

H2 = -L 4 13 52L /366 [Rxx+ x 3 )X R (3-61)

H = x* /R (3-62)7 1

H / R (3-63)8 2

H9 =x3 R(3-64)

H 10= _x 2 ) (3-65)

H = 1 (3-66)111

H. = 1 /'L (X L 2 (3-67)1L2 3 (x

H3= 1 / (3-68)

131

tO with

R 2 (+ 2 + (j* 32(12 (3-69)

3.j. Noise Models "

The noise models used in the CTR filter are divided into

two categories and discussed separately. The two categories

are dynamics driving noises, which comprise the w vector

(with strength matrix Q) of Equation (2-5), and measurement

noises, which comprise the y vector (with covariance matrix

R) of Equation (2-7).

The CTR filter acceleration states are driven by noises

w1 , w2 , and which are assumed to be zero-mean, white,

Gaussian, and uncorrelated with each other as well as the
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states. The strengths ql, q 2 ' and q3, respectively, of these

noises are assumed to be equal; i.e., the target is assumed

to be equally capable of acceleration in any direction. All

accelerations are assumed to be less than 9 g's, which is

treated as a two-sigma value to account for 95 percent of all

expected accelerations. Thus, the strength of the noises

. (v 2) is approximately 21,000 feet 2/second 5 . If the G matrix

of Equation (2-2) is assumed to be a 9x9 identity matrix, the

0 matrix is

0
6x9

0 = (3-70)

- - - - -- 0 00 0
•q

1
0 10 q2 0
3x6 2

10 0 q3

where q =21000, 1=1,2,3.

3.4.2 Measurement Noises

Since real sensors are imperfect, the measurements

available from them are corrupted by noise. These discrete-

time noises are assumed to be zero mean, white, Gaussian, and

uncorrelated with each other as well as the states. The zero

mean, white, and Gaussian assumptions do an adequate Job of

modeling modern sensors, and the noises are uncorrelated if

the measurements are made by independent devices. Although

the devices performing the measurements are not totally
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independent, especially for the angle measurements, any

dependence is assumed to have negligible effects on the

measurements taken. If the measurements are not independent,

a change of variables is done (see Section 2.4.3) to effect

independence. These assumptions yield a diagonal R matrix,

RI  0 0 0

R 0 R2 0 (3-71)

0 0 R 3  R
L 0 R 4J

where

Ri, R2, R3, and R4 are the variances of the measurement

noises for the range, range rate, and tangents of the azimuth
and elevation angles, respectively.

Because the standard deviations for the angle

measurements are small, the standard deviations for the

tangents of the angles are approximately equal to the angular

standard deviations by the small angle approximation. The

measurement accuracies presented in Section 3.3 are one-sigma

*- values; the accuracies and variances are listed in Table I.

Table I

Measurement Accuracies and variances

Measurement Accuracy (ir) Variance ( 2

Range 6.7 feet 45 feet 2

Range rate 1 foot/sec 1 feet2/sec 2

Tangent (az) 1.13 mrad 1.2769X10-6rad 2

Tangent (el) 1.13 mrad 1.2769X106rad 2
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3.5. F.T..E. E~~.implementation

Implementing the CTR filter requires a slight

modification to the general SOFE routines as well as

development of filter-specific subroutines. A modification

to the general SOFE routines is required so that the

rotations described In Section 2.4.4 can be performed before

and after each update. The filter-specific subroutines

define the filter dynamics model, the measurement model, and

the noise models, and provide Input of filter variables to

* the program (6]. SOFE contains many features to enhance user

* interaction and output, which are explained In detail in

Reference 6.

SOFE exercises the filter model by Integrating the

* dynamics equations forward in time to the update time via a

* fifth order Kutta-Merson technique, then performing the

* update via a Carlson covariance square root algorithm. The

* Integration/update cycle Is repeated until the final time

-, specified by the user is reached. The entire process from

initial time to final time, called a run, Is then repeated as

many times as the user desires. Successive runs use a

different random number sequence for the simulated Input

noises, so averaging the outputs from a sufficiently large

number of runs can provide accurate performance sample

statistics of a certain filter configuration (6]. This

ensemble averaging Is done by SOFEPL 17). Results of the CTR

.=. filter runs are presented In Chapter V. Before the GM filter

Is presented, the reference frame rotation Is discussed.
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In order to perform the rotations described in Section

2.4. , the sensor head position with respect to the inertial

frame must be known. In the actual system, the sensor head

position is given by two Euler angle rotations: The first,

from the inertial frame to the aircraft body axes, is

determined by the INU; the second, from the aircraft body

axes to the sensor head axes, is determined by angle

resolvers in the sensor head mount (10]. In this thesis the

attacker is assumed to be benign (as discussed in Section

1.3), so the first Euler angle rotation is eliminated. The

second set of Euler angles is initialized so that the sensor

head is pointed directly at the (estimated) target position,

then incrementally rotated at each sample time by the

.O following algorithm, which is used in the current

implementation of the TSE (10]:

1) Rotate the inertial target position (from the

truth model, or external trajectory) into the current

LOS frame:

II
T 1 (3-72)

EL L -TL

where

p is the target position vector in the LOS frame,
-L
I Is the Euler rotation matrix, Equation 3-41,

and L

is the target position vector, inertial frame.

2) Find the error angles between LOS and the

target position vector:

e = arctan / L(3-73)
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" 2 2 ( 1/2 )ee = arctan [P3L / (PI + P2 (3-74)

e2 z-32) (374) 21

where

e a is the azimuth pointing error angle,

e e is the elevation pointing error angle, and

PiL is the component of the PL vector in the i-
direction, i=1,2,3.

3) Calculate the velocity of the target normal to

the range vector by the cross product operation

EI = PI X I  (3-75)

where

R I is the (estimated) target velocity normal to
the range vector, expressed in the inertial frame,

PI is the (estimated) inertial target position,

0
and I is the (estimated) inertial velocity vector,
and

X Indicates the cross product operation.

4) Rotate the velocity normal to the range Into

the LOS frame, and convert to unit vectors

YL = TL RI / 11R 11
2  (3-76)

where

WL is the rate aiding vector in the LOS frame, and
IR 1 2 is the square of the relative target range.

5) Calculate the rate aiding terms as

W (1) = Wa(1) + 26.46.Ate (3-77)n a

W (2) = Wo(2) + 26.46.Ate (3-78)n e

where
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Wn (i) is the new rate aiding term in the i-

direction, i=1,2,3,

Wo(i) is the rate aiding term in the i-direction
from the previous sample time (initialized to zero), and

At is the sample period (time between updates).

6) Calculate incremental gimbal rotations over the

next propagation cycle as

= ( + 12.6e + W (1))At (3-79)Aa ( (3)+ 1.6'a n

= + 1.e + W (2))At (3-80)
e n

where

Aa is the amount the gimbal rotates in azimuth in
the next At time interval,

Ae is the amount the gimbal rotates in elevation ,
in the next At time interval, and

to WL(i) is the i-th component of WL"

7) Calculate the Euler rotation matrix TAt which

rotates the sensor head to its desired position at the

next sample time, based upon the incremental gimbal

rotations from Equation 3-41.

8) Multiply the body-to-LOS Euler rotation matrix

by the incremental gimbal rotation matrix to yield the

body-to-LOS Euler rotation matrix for the next update:

T = T TB  (3-81)
Ln At Lo

where

BT is the body-to-LOS rotation matrix for the
Ln

next update time,

T is the incremental gimbal rotation matrix, and
At
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TB is the body-to-LOS rotation matrix for the
Lo

present (just completed) update.

The transformation from inertial to LOS is given at the

next update time by multiplying the inertial-to-body rotation

matrix, obtained from attitude information from the INU, by

the new body-to-LOS r.,tation matrix. Since a benign attacker

is assumed in this thesis, the inertial-to-body

* transformation matrix (for this research only) is Just a

three-by-three identity matrix.

3.6. Coordiate Transformations

As discussed in Section 2.4.4, the covariances and

states must be rotated into the LOS frame for update and back

into the inertial frame for propagation. The states are

rotated into the LOS frame by the transformation matrix given

in Equation 3-41 before update:

T 0 0
L 3X3 3X3

1L 03X3 TL 0 3X3 K- (3-82)

0 003X3 3X3 L

where

x"L is the state estimate before update at t i in the LOS

frame,

is the state estimate before update at t i in the

inertial frame, and

TI is the inertial-to-LOS transformation matrixTL

- computed by Equation (3-41).
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Since the transformation matrix TL used for this rotation is

.-7 orthogonal, Equation (3-82) can be used to transform the

states from the LOS frame to the inertial frame after update,

if the transpose of TI is used in place of TL and the roles

of 2 and IL are interchanged. The covariances are rotated

into the LOS frame in much the same manner, except a post-

multiply by the transformation matrix is required:

T 0 0 T' 1 0 o T
L 3X3 3X3 L 3X3 3X3

P 03X T 1 0 P_ 0 T 1 0 (3-83)
L 03X3 L 3X3 3X3 L 3X3

01 0 I
0 3X3 0 3X3 TL .3X3 X3 TL

where
0 P_ is the covariance matrix before update at t in the

L I
LOS frame,

Py is the covariance matrix before update at t i in the

inertial frame, and

TI is the inertial-to-LOS transformation matrixTL

computed by Equation (3-41).

3.7. Summary

The CTR filter is presented in this section. The filter

dynamics equations, measurement equations, and noise models

are presented, and implementation on SOFE is discussed.

Finally, the method used in this thesis to rotate the states

and covariances between the inertial and LOS coordinate

frames is presented.

.* - Because it models the real-world situation well, the CTR

filter is used as a baseline in this thesis and few

46



assumptions are made to simplify its complexity. The next

chapter presents a simpler filter model and makes more

simplifying assumptions to reduce recursion computation time.

Results from both filter models are compared in Chapter V.
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IV~. Gauss-Markov Filter

-J4. Introduction

Two implementations of the Gauss Markov (GM) EKF are

presented in this section. The first implementation uses the

propagation and update techniques presented in Section 3.5

for the CTR filter. The second implementation uses the U-D

covariance factorization techniques described in Section

2.4.3 for propagation and update. Both implementations are

shown to be less complex than the CTR EKF presented in

Chapter III. Reduced complexity is desirable because the TSE

on board the AFTI/F-16 is limited in both memory allocation

(32K of program space and 32K of dynamic RAM) and processing

time (7 milliseconds per update frame) [i01.

.. Dyais

The dynamics model of the GM filter uses the same states

as the CTR filter, given in Equation (3-1). The dynamics

model for the GM filter is

40

6 
0

x 7-a 1 0 .

= x8 -a2  + 0 (4-1)

x9 -a 3  0

-X7 w I

- 8/ 2 w 2

"X 9 / 3  w 3
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where

w 2, adw 3 are zero-mean, white Gaussian
noises independent of each other and of ,

TV' Ir2 and 'r3 are correlation time constants
for the acceleration states, and

a,, a 2, a nd a3 are the attacker accelerations In
the 1, 2, and 3 directions.

The correlation time constants characterize the half-

power point of the power spectral densities of the correlated

acceleration. The frequency at which the half-power point

occurs is assumed to be at about two Hertz for high-

performance aircraft [8:61], yielding correlation time

constants of two seconds. The correlation time constants are

assumed to be equal In all three directions because the

* target is assumed to have the same acceleration -apacity

* along any axis of the Inertial frame [8:611.

Since the dynamics model Is linear and time Invariant,

the dynamics matrix F of Equation (2-6) Is calculated as

0 0 0 0 0 0 0 0

o 0 0 0 1 0 0 0 0

o 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

F= 0 0 0 0 0 0 0 1 0 (4-2)

0 0 0 0 0 0 0 0 1

o 0 0 0 0 0 -1/Ti. 0 0

*0 0 0 0 0 0 0 -1/T 0

o 0 0 0 0 0 0 0 -/
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which is obviously a much simpler matrix to evaluate than

the F matrix for the CTR filter (Equation (3-17)).

4.3. Measurement EgainS.

In the GM filter, the states and covariances are

propagated and updated in the inertial frame, so the

measurements are accomplished differently than in the CTR

filter. The range and range rate measurement equations are

are Identical in any frame, and the covariances associated

these measurements are equal in either the inertial or LOS

frame. However, the covariances of the angle measurements are

angles about the LOS vector, which are not the same in the

different frames unless they describe a circular cone about

the LOS vector. Unfortunately, the covariances describe a

squared cone, as shown in Figure 5. The covariances are

equal if the planes described by the 1-2 axes of the

coordinate frames (the 'horizontal' planes) are aligned, and

are skewed up to 45 degrees otherwise. The FLIR head is

roll-stabilized in the aircraft [10] so the 'horizontal'

planes should always be closely aligned.

".'S Figure 5. Angular Error Covariances
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Since the states are not rotated into the LOS frame for

update, different equations are used for the angular

measurements: the angles are measured as Euler angles; i.e.,

tan (a) = 2 / Ix1  (4-3)

tan (e) = X / (x + z2 )(1/2) (4-4)

. and the range and range rate measurements are given in

Equations (3-36) and (3-40), respectively.

The H matrix is calculated as

H H 2H 0 0 0 0 0 01 2 3

H H H5 H5 HI H2 H3 0 0 0 (4-5)

H7  H8  0 0 0 0 0 0 0

H9  H1 0 H1 1 0 0 0 0 0 0

0 where

H = R (4-6)

2 = 2 /R (4-7)

H3 = 3 R (4-8)

)e-4 x ) / + 3  (4-9)

-3(,% F + j2(5k+ X3X6 ) ) / R (4-10)5 x5R x2 .1 4  x2 5  x3x6
2

H = 2 X 1I (4-12)

H8 =1 / (4-13)

9 + k2 3/2 (4-14)
9  1 3 / ( +

H 0 =  + 92 3/2 (4-15)10 2 3' 1 +2
2 4-- 22 -( 1/2)

2 2., ( •92 )(2 1(4-16)
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with

R ,2 + +-.x2 )(1/2) (4-17)
(1  2 3-

As with the CTR filter, two types of noise models are

apparent In the GM filter: measurement and dynamics noises.

Measurement noise models are Identical for either filter

* because the same devices are used to perform the

measurements. Dynamics noise models are acquired by assuming

that zero-mean, white, Gaussian noises drive the acceleration

states and performing a steady-state covariance analysis.

* According to Worsley 18:631, the results of this covariance

analysis results in the equation

2 P33/"' =, q 1  (4-18)

- - where

P33 Is the covariance associated with the

acceleration state along any axis, and

qIs the strength of the driving noise.

Assuming the same value of error in the target acceleration

estimate as in the CTR filter and the correlation time

* constant of 2 seconds, the value of q1, i=1,2,3 Is 21000

fe2  5
fetper second , the same as for the CTR filter.

iLLAcceleration Rotatio.n

The CTR filter dynamics equations use a constant target

turn rate model, as developed in Appendix B, to correlate the

acceleration states with the velocity states in an effort to

match the expected target performance In an aerial engagement

18:3,22]. The GM filter dynamics model does not correlate
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the acceleration states to anything, but rather assumes that

the target is always capable of equal accelerations in all

directions. Thus, the GM filter does not effectively model a

real aircraft, because most aircraft accelerations occur

normal to the aircraft's flight path. one method of forcing

the GM filter to model a real aircraft more closely Is to

rotate the acceleration states to make them perpendicular to

the velocity states Just before the states are updated [3.0].

The acceleration rotation is accomplished using two vector

cross products, as shown below:

An YL,. X ( oX YYT (4-19)

where

&Is the new (rotated) acceleration vector,

is the old (non-rotated) acceleration vector,

YIs the target total velocity vector, and

X denotes the cross product operation.

For both Implementations of the GM filter, the rotation

above is performed on the state estimates after propagation

but before update. Thus, the GM filters used in this thesis

are modified GM filters.

Qh ilIter Implementation

As mentioned In Section 4.1, the GM filter is

Implemented two ways in this thesis. The first

implementation mirrors the CTR filter implementation, shown

In Section 3.5, using Carlson square root covariance updates

and propagation by integration. The second implementation
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uses U-D covariance factorization techniques to update and

propagate the covariance matrix, and the state transition

matrix to propagate the filter states. An overview of these

techniques is presented in Section 2.4.3; the remainder of

this section is devoted to explaining the implementation of

these techniques using SOFE.

The state transition matrix, ct(t,to), propagates the

states from to to t and is used to propagate the covariances.

For a linear, time-invariant system dynamics model such as

the GM filter, the state transition matrix can be calculated

as an inverse Laplace transform (4:421:

(t-to) = £-{[sI - F]- 1 1  (4-19)

where

S£ 1 is the inverse Laplace transform operator, and

s is the Laplace integration variable.

The state transition matrix for the GM filter is

calculated (assuming T i 2=r 3= r) as

0 0 t 0 0 i 0 0

0 1 0 0 t 0 0 0

0 0 1 0 0 t 0 0

0 0 0 1 0 0 2 0

0 0 0 0 1 0 0 t2 0 (4-21)

0 0 0 0 0 1 0 0 Z2

0 0 0 0 0 0 :3 0 0

0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0
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where
2 2

= T - 2 + 'r exp(-At/Ir) (4-22)

2 = r - r exp(-t/v) (4-23)

t3 = exp(-At/,) (4-24)

Since Equations (4-22) and (4-23) are differences of numbers

of similar magnitude, their calculation may be inaccurate if

done by a small wordlength computer, especially for small

values of it. For this reason, Equations (4-22) to (4-24)

are expanded in a Taylor's series. The series is trucated

after the first two terms, resulting in the approximations

n

2 =  (-1)
- Atn_ 22 - At /(6) (4-25)

n=2 n! -

2 = Zt () t - At/(2-)(4-26)
n=1 n! r

6n

n3 n 1n 1- At/'r (4-27)

These approximations introduce a maximum error of 0.0014

percent into the calculations for .

To propagate the states if an input (attacker

acceleration, see Equation (4-1)) were present, the Bd matrix

of Equation (2-23), as defined in Equation (2-24), is

required [4:1711:

B d f )(ti+lr) B(c) dw (4-28)

I
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where B is the continuous-time input matrix imbedded in

Equation (4-1). Assuming the input is the three-element

attacker acceleration vector, the discrete-time input matrix

is calculated as

2
t2/2 0 0

0 At 2 /2 0

2
0 0 At2/2

-At 0 0

Bd= 0 -At 0 (4-29)

0 0 -At

0 0 0

0 0 0

0 0 0

!

where At= t t i

The covariances are propagated by using Equations (2-18)

to (2-22). The values for Gd and Od in these equations is

* calculated by assuming that G, the continuous-time input

matrix, is a nine-by-nine identity matrix and Q, the

continuous-time noise matrix, is given by Equation (3-70).

Then, Equation (2-20) is used to calculate Qd [4:171] as
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2 3"

0 01 0 0 0 2 0 0 Q 3 0

0 0 Q10 0 Q2 0 0 03

02 0 0 0 4 0 0 Q5 0 0

Qd = 0 Q 2 0 0 0 4 0 0 Q5 0 (4-30)

0 0 Q2 0 0 Q4 0 0 Q5

2 4.

Q3 0 0 Q5 0 0 Q6 0 0

0 Q3 0 0 Q5 0 0 Q6 0

0 0 0 0 0 0 0 0 Q6

where, using the same expansions as for Equation (4-21),

Q1 = q  _l n 2(n!) - 2 (n-l): At n

( -I) n ! (n-l) ! " -i

5 6

q[At /20 0 /(36,)] (4-31)

Q2 = q Z (_i) n  (2 n-l-l1)(n-1)! -n! At n

Q2=q 4 n! (n-l)! -1-

0= 0 40 5

02[t4/8 t 04 0(12 )0 (4-32)

- (-1)n n! -2n- (n-l)! Atn

1 = n! (n-I) ! n- -i

n=35'

q[At 3/6 At t4 (6 ) (4-3
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_2) -22 n-i At n
Q04 =q E n! n-1

n=3

-q[&t 3/3 - t 4 /(4,r)] (4-34)S2 n  1 At n .

.n
" "Q4 = q E (-1) n ' --l "~

n2-3

q[At /2 - At /(21] (4-35) .

(_,)n-i l-i At
n

6(-) n! n-I

n=1 *

z 2q[At - At 2 /'r] (4-36)

The errors incurred by truncating the series after the first

two terms are less than 0.0094 percent of each Q value.

In the equations for propagating the covariances

(Equations (2-18) to (2-22)), the 0 d matrix is assumed

diagonal and the Gd matrix is upper triangular. The required

forms of these matrices are acquired by breaking the Od

matrix of Equation (4-30) into an upper diagonal unitary

matrix and a diagonal matrix using the algorithm presented in

Equations (2-13) and (2-14). Note that this is the same

algorithm used to generate the U and D factors of the initial

covariance matrix, so additional programming is not required.

To implement the second form of the GM filter in SOFE,

several modifications are required. First, the integration
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routines are removed and replaced with the propagation

algorithms presented in Section 2.4.3. Then, the Carlson

square root update algorithms are replaced with the U-D

update alcorithms, also presented in Section 2.4.3. The

filter dynamics models are removed, because these models are

* imbedded in the propagation algorithms. Much of the

remainder of the program is then modified to allow several

input/output calls, embedded in the removed routines, to be

performed.

4.7. Sumary
The GM EKF is presented in this chapter. The GM

dynamics model is shown to be less complex than the CTR

filter dynamics model of the previous chapter. Also, by not

rotating the states and modifying the measurements, the

filter becomes less complex to simulate because the sensor

head need not be manipulated in order to acquire the

inertial-to-LOS transformation matrix.

In Chapter V, results of the GM EKFs are compared to the

results from the CTR filter of Chapter III.

5
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Thischaterpresents the results of the SOFE

capabilities of all the filters are compared. Finally,

conclusions of the research and recommendations for further

study are presented.

Each SOFE simulation exercised a filter over 20 Monte

Carlo runs to monitor the statistical performance of the

* filter. Each of these runs is made against a file of

trajectory data that is invariant from run to run and filter

to filter. In this way, the relative performance of the

* various filters can be compared,

5.2. Traleto~ Generation

Trajectories for the simulations are generated by

* computing the effects of an acceleration on a point mass

traveling at a specified speed. Any changes in applied

accelerations were accomplished at the rate of nine g's per

second. only basic planar moves were attempted; the point

* mass first executed a nine g right turn at three seconds Into

the simulation, then a nine g left turn at five seconds. At

eight seconds, the horizontal accelerations dropped (over a

one-second interval) to zero. Then, a similar move was made

In the vertical plane; first, a 5 g downward turn at 9

* ,** seconds, then a 5 g upward turn at 11 seconds, and falling
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off to 0 at 14 seconds. The target is thus propagated

N forward from a given set of initial conditions and compared

to the position of the attacker, which is always headed due

north at 1000 feet per second. The relative position,

relative velocity, and total target position, all referenced

to the inertial coordinate frame, are then stored in a

triectory file.

Two sets of initial conditions generated two different

trajectories. The first set of initial conditions places the

target 5000 feet directly ahead of the attacker, going in the

same direction at the same speed, as depicted in Figure VI.

The second set of Initial conditions places the target 10,000

feet away at a -45 degree angle from the heading of the

attacker (to the attacker's left). In the second trajectory,

the target is travelling at 1100 feet per second and at a 45

degree heading; i.e., the target Is crossing in front of the

attacker, and the first accelerations are applied towards the

attacker (see Figure VII).

The trajectories are computed at a 3000 Hertz rate to

ensure high accuracy of the simulation results. However,

data are output to the trajectory file at a 30 Hertz

(simulated) rate to be compatible with the filter sample

rate. If the data rate of the trajectory file is different

from the system sample rate, SOFE interpolates the trajectory

data as needed using cubic splines. This interpolation

requires significant processing time each cycle (frame) [6].
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Each filter Is run on SOFE for 20 Monte Carlo runs for

each trajectory file. Twenty Monte Carlo runs is considered

to be adequate based upon an analysis done by Worsley (8].

For each filter/trajectory combination, an ensemble average

across all 20 runs Is obtained. Plots of these ensemble

- averages are presented In Appendix C. The plots reflect the

error between the filter estimated state and the trajectory

* state, and the covariance associated with each state, one

* state per plot. An analysis of the plots follows; Table II

summarizes the maximum position error along each axis and the

maximum total position error for each of the filter!

* trajectory combinations.

The CTR filter keeps the error between the estimated
0

state and the trajectory data well within the covariance

* boundaries for all but a short time during the simulation.

Also, the position states always have less than three feet

total error along any axis. The CTR filter appears to be

* tracking well.

Two different results are obtained for the two

Implementations of the GM filter. The filter which

Integrates the equations forward In time had results nearly

* identical to those of the CTR filter. However, the GM filter

which used propagation and U-D covariance factorization

techniques tracked comparatively poorly; the maximum total

errors are as high as 20 feet at times.
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Table II

Filter Results

Filter TraJ- Maximum Error (Feet)
ectory

1-axis 2-axis 3-axis Total(RMS)

CTR 1 1.3 2.7 2.7 2.8

GM 1 0.7 3.4 2.6 3.5

G (UD) 1 5.3 19.5 12.5 20. 3

CTR 2 1.3 2.7 2.7 2.7

GM 2 1.1 0.9 5.0

GM(UD) 2 3.5 17.8 14.0 17.8

5.LL.Conclusions

Apparently, a flaw exists in the implementation of the

0 U-D factorization GM filter. The U-D filter Is tracking, but

not quite as well as expected, given the performance of the

other two filters. Varying system parameters seems to make

performance worse rather than better. Testing of the various

routines reveals that the flaw is probably in the routines

which propagate the states and covariances forward in time,

and not in the update routines. A possibility exists that

SOFE does not work properly without some of the routines

which are removed for this filter implementation.

Not rotating the states and covariances into the LOS

frame for update seems to have very little effect on filter

performance. The CTR filter, which did the rotation,

performs little better than the integrated-forward GM filter,

.% which does not do the rotation.
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..5.5. Recommendations

Each of the filters implemented in this thesis uses

numerically stable covariance update techniques. Two quite

different dynamics models are used with comparable results,

and the covariance matrix rotation during update has no

significant effect on filter performance. However, the

previous AFTI/F-16 TSE does not perform as desired (2].

Since the filter dynamics models and covariance rotations had

no significant effect, the effect of using conventional

covariance update techniques should be investigated.

Also, the effects of finite wordlength should be

investigated in more detail. The equations developed in this

thesis can be run on a comparatively short wordlength

,0 computer, such as a Zenith Z-248, to study the effects of

truncated wordlengths, or the wordlength of each quantity can

be trucated after each operation to simulate the shorter

wordlength.
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Apd • YulJ A Development

This appendix briefly presents the Euler angle

relationships used in this thesis. Three reference frames

are used: the inertial frame, which is stationary for all

time, the (attacker aircraft) body axis, which may both

translate and rotate, and the tracker (or LOS) frame.

The first reference frame, the inertial frame, is

defined by the orientation of the INU and denoted by a

subscript 'I'. The origin of the axes is defined as the

center of the INU, because all rotations are measured around

that point. A common name for this type of inertial frame is

a wander azimuth frame, because the 'down' direction is

always defined and 'ahead' or 'right' can be defined in any

convenient manner.

The second reference frame, the body frame, is defined

to have the 1-axis pointed out the nose of the aircraft, the

2-axis pointed along the right wing, and the 3-axis pointed

out the 'bottom' of the aircraft body. The body frame,

denoted by the subscript 'B', has its center at the center of

gravity of the aircraft.

The third reference frame, the LOS frame, is defined by

the orientation of the sensor head. The 1-axis points

perpendicular to the plane of the sensor (FLIR) array and the

3-axis points 'down' (the sensor head is roll-stabilized).

The 2-axis completes the right-handed coordinate frame (it

points to the 'right').
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Each reference frame can be related to the next by Euler

angle rotations. These rotations are defined by two angles,

say 0 and 0. These angles define how much the base reference

frame is rotated, first to the right in azimuth then down in

elevation, to match the orientation of the second reference

frame.

Although Euler angles are easily defined for most

relative orientations, they are ill-conditioned if the second

Euler angle approaches 90 degrees. If the second Euler angle

equals 90 degrees, the first Euler angle is undefined because

the 1-axis of the second reference frame cannot be projected

into the 1-2 plane of the base reference frame. The

possibility of this occurring is assumed to be negligible in

this thesis; other coordinate transformations, such as

direction cosines or quaternions, could be used to eliminate

any problem with reference frame orientations.

However, because Euler rotations are performed,

especially In the INU where the STS has no control, one

property of Euler rotations i' especially important in this

thesis. This property is the following: if two or more Euler

rotations are performed to go from the basis reference frame

to the measurement reference frame, the orientation of the

measurement reference frame with respect to the basis

reference frame can not, in general, be described by a single

Euler rotation using the sums of the rotation angles.

Therefore, because the angle measurements are performed in

the sensor head frame, the position of the sensor head must
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be known (or estimated) in the Kalman filter. Estimated

angles are then rotated into the sensor head reference frame

and compared to the actual measurement. Conversely, the

measurement could be rotated into the basis (inertial) frame

and compared to the estimated line-of-sight; this thesis uses

the former approach because the covariance matrix undergoes

the same rotations during measurement update (as explained in

Chapter II).

0
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Ap x E, Constant Turn Rate Coefficient

The coefficient llwll used in the constant turn rate

(CTR) filter is derived in Reference 8 and included here to

Nmake this thesis as complete a work as possible.

The CTR coefficient Niwl 2 , which is the square of the

magnitude of the target's inertial turn rate, is developed

from the application of the Coriolis theorem, written as

Id  Td

dt dt

where

YT is the inertial target velocity,
7 I

j. is the inertial target angular velocity,

* X denotes the cross-product operation, and

the superscripts I and T before the derivatives indicate
that the derivatives are taken in the inertial and target
body frame, respectively.

Now, the first term of the right-hand side of Equation (B-1)

is zero because the target is assumed to be at constant

speed. Taking the derivative of the remainder of Equation

(B-1) with respect to time yields

1 2 I
.. ( i d x Y ) (B-2)

2  dtdt

or, expressed in the target's body frame,

I d2 T d

T= -
(u X YT + ((A X (k X Y(-3)

62 dt".-'."d t
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Now, since both the target speed and angular velocity are

assumed constant, the first term on the right-hand side of

Equation (B-3) is zero, yielding

Yr X (kI X Y (B-4)
dt 

2

Using the relationship for a triple cross product, Equation

(B-4) is written as

1d2

d 2
- ( V) - (L (B-5)

dt 2 YT 
(8-

The first term of Equation (B-5) is zero since, for a

planar turn, the target's inertial velocity and angular

velocity vectors are perpendicular. Thus, Equation (B-5)

becomes

122
d - 111 2 YT(B-6)

dt
2

which is the vector form of the derivatives of the

acceleration states of the CTR filter.

To compute II ll2, tne target's inertial acceleration

vector, AT/ is written as

A = I X V (B-7)

for a target flying at a constant speed. Taking the cross-

product of the target's velocity vector into both sides of

Equation (B-7) yields

• X: AT.=r  x X . (_ A I X, x )  (B-8

or, using the triple cross product relationship,
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I I

YT (, it, YT(B-9)

Again, since the target's inertial velocity and angular

velocity vectors are perpendicular, the last term on the

right-hand side is zero. Rearranging Equation (B-9) gives

Si X AT) / IiTI,2  (B-10)

Since

1 12 = I * I) (B-i

substitution of Equation (B-10) into Equation (B-l1) yields

Ilk 1,1 2  I ,, X AT _ T X AT / I ,1, , 11 1-2

In the thesis, then, the appropriate state estimates replace

their vector representations in Equation (B-12).

to
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Ap, Plotted Data

The following are plots of the ensemble averages

of data for each of the filters evaluated against each of the

trajectories. Six filter/trajectory combinations are

plotted, in plot sections numbered one through six. The

first three plot sections are for each filter evaluated

against Trajectory 1, as defined in Section 5.2. The last

three plot sections are for Trajectory 2. Each plot section

is subdivided into plots a through I, representing filter

states x, through x9 , respectively. Thus, the plotted data

is readily compared across filter types and trajectories by

comparing plots with the same letter designator.

72



r 7VRVrM~~t C s T -w- y-xr ~ -' .f-2, V'-X- VI

I)6

V0

I I -

h.D

ic
9 6cl 9 6zell T~c 609 00,0 691- BTZ - 6 't- 8CV9- tO'-

(la@) 1011H OTIT~d SX'V0

73C



% %. h** %. - *~ ~ C - -

I
-

0
4.

0
0
03

(NJ
'C

o -
CNJ

- '-4

>1

0

t~
6 corN

CE-
CoQo~

o
-4

QCL

oHU

I
.0

0

4.

6

ON

CL-46

0
0

6

0

o

8~09 ectS 8~9t airs 8091 0000 8091- airs- e~9 t- OCt 9- OtO

* (p~j) dOJJ UQElISOd SIX'y'-~

74

>4 '&jX&' >(%.~-~ -. * .*ic< .-s. - S 91-: *~ - *. -



- - - a - .. '.M t . ~ a - a - - - - - - - - -

I

xc
Co

I I -

0
.4
.4

- I

0

c'a

'C

0

N e4

- N

0

U
o

6 C/)r~

~~ Q~4

6 ~-' p
-
~za

C)
~

C *

U

6
b-i

0 EZa
N

6

6

0

o
x 0

8*09 6C*9 6~9I 8T~C BOOT 0000 8091- 8130- 839*- 80*9- 6*0 9-

* a (m;j) JOfl uovyisoj sixv-s
* -- a

I
75

- - - - N%.,,.%..%2%..,~. '

~ *a**a% . - - - - *

Za ita 2.2% fl.~ A.AL A xAa.Aa -



-,F -1- - - -

.44,;

05

co

Viol TT90 99'0 ov' ?D'O 00*0 zoz- go,- 091 TT9- tox

-10,,IE ITDO@A SX'--

760



-~C >1-~

.4.

SE-

J.0

-'E,

-N,

0

L C

44CZ C94T 9TT V69, 00 ,0 ,69 99'1- 94-- " Z- 48 o

4..4..~ 0IOP TV2

N,.. 7 7



-- E-

4' 0

41

4..

C
2 4\?

Ul

OIC2~~~~~ ~ ~ ~ ~ ~ 091 clV990 000 99- C1- 04- 4'*- K Z

-IOJIH XT30aA SXV-

-. 6 U78



0

4-)

0 E-

0

606* 4ZII 0 T cc~z Tell 0000 Tel- ~c~- gt~c- LZL~- 68L9

JO~l U0j12Jja;3V SXV o

79o

N*-



0
4-)

E-3

CV

Cl

tt

80~



--- 4

41

co

w )4

0i

999' zgzo 00,0 GZ' 999- M* Tel- iltl

.10..1H IO142.19@;D;V SI'V0



0

4.
4.

xr

6CY9 6.19*t TZ' 601 00,0 091 61zs- 91- 66V - 6o 9

0 J)-IOIH UTIT~d SXV0

820



CIA

F I Ii I II I

0i

6091 000, 601- B C- 29*t 8cQ- 6o'g

-10-11,'gUOTIS~d TXV0

83N



VV

00

-oo

84.



J~.

.' ..-..

0-0
0

~J.

0

0

x

- 0

N

-~ 0

4-)
C-)

* 0 1)

~ ~

o ~])~-~
-, -~

-,

4-)

0 ~
' EL

0 -

V

0

EL

0

* 0

S
0

0

0o
0

1016 t9~l. 09~ ~ 0t'9 C 0~9 I 0000 0~9I- 0 '9 C- 09 ' ~- 1R~~- 101 6-

* * * (~~/'~~j) JOJJ~ 1~iDOI9A SIX\T-~

85
J-.

-~~-~--~



7- E

4.

co

0

co "

609T Z99z 112 19i" OZ,0 00,0 OZ4- TIP - T9 Z- ZIR 7

I JTQJ,9- S>9

86C



RIR-TO-AIR ATTACK NOO.. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON RFD ON SCHOOL OF ENGI. D L NICHALK

INMcRSSIFIED DEC 97 AFIT/GE/ENG/870-44 F/O 19/5 ML

mEEEEEEmommalmhE
EEEomH.EEEEEEEs
IEEE'mmomo



- mm 2

___ ijii')fps

%4L Ik
-- w

~ 20 1



'V 'VTVV~1 -1 -. R1 .- mn 7

0
41.

0)

0 C/4-

I~44

0 64

9 - '-C:

§

4242 191 9c*T 601 09*0 0000 gg*- 080- 9C1- GT'- 44*z

X11301a STX0V-

81v



4. )

00

E-4

4
cz0

oo

m I I LI I I0

4079~~~~~ ~ ~ ~ ~ S9' ~~ tz TTT 000 TTT r-tce a~-499
.10..1S U0112.1laDO SI'V-

o 88



0

-

d1

MCI~~~~ ~ ~ ~ c 190 OO 000 9c* 6- Lo- MI Z1

.10.1.12 ~ ~ ~ U042I2aovSTV ?

89~



0

'-4

II64

900

06- -06 0



0

CC

6*01 sC1 2' 
-4 09T 000ezc zgt c*- sog

-10--12 OIII~d SXV-

91,



0

-

0

41

Q)

00

04

ciI

9lf'z 49* kop'l wG~ 69*0 00* 89v- C8* 40T- 491 9'C*0

-10-119 UOITS~dSaXV-

92I



1-4

- 0
4.)

-4

-)

04)
-4

?09* TOT TW 00,0 OC'O 000, OO'- 09- OO,- TOZT- o

P4N N



-. x

-4

E-0

(U

-4

OG)

944



E-

-4

41

04)

'- 0

-4

**V2 MIT zzz~ 11,0 00,0 179- UZ- C91- tt*'- 90zC

-10--IE ITO~aA SX'Vo

95)

d, 4ro



hi hi- - hi

0

- 0

U
Q) a

E

4

22

964



C

041

- 0
.)

00 4

'-1

Si

TAT 000 TTI tz- *cc o'- L99

.10..1a U0112.1laDO SI'V0

974

J, OF ve
Le2



x

-4

-. 0

41

0
-

04

cc .

o

.1- 5T

JOJ-T U0j2.c;3D SSV-

980



x

-4

0

-)

0) 1

0

-4

4

400

E-4

9c GOTT TWgO tgg~O l442O 000o0 44- tgg- 1cg9- 9On- WEI1-

IV.

99



0 #.4

u

E->

0

0U

-

J1 I
ev~ 8c* .5,.IZ 0* 0, 09 - BZC z't c'- 8og

-10--19 OIII~d SXVS

10 0'



0

C

jo04

0 N

E- E-)

Bto~ 6CV9 r~f l~r, 691 00*0 609- eic- Z91f- 6fV- 61049

.10.1-9 UOTIS~d "Xtr-

101~



V.N

0

->9

o

609*1 ~ ~ ~ ~ ~ ~ h ]0* 0*- SZ- BQt s'- 8og

1001
0 j-k



WV-~WV~ V \LWVWVWVWVWVWVWVV V V W W ~WVV V V WV WV WV WM Pqpl~xx-r vwr "-7 T ;- Jkin~ Xw '*1%nv NrvlWVL

Co

x

>4

0

E-

- i

- 4

103



0 uI
E->

U0

1041

% %



C1

0

E-

0

Eva.

0-

o

tco6z 1.c 094*1 C471 999*0 000*0 999'- C11- 091.1- 1.teC- K~62-

105



0

-
u

0

Q
4-)

'-4

-
0

106



x

o N

U0>I

4.)

-4

Q) '

o j

69* 941* TWO0 499'0 Cwo 000,0 sez- 49,- 99'- 94169*

107

% V4

%1
IC %.7



I I -

164

0

Q 0

0

co

O E-

U

Ci

10.11:4- SOj2Tj;DVSX-

108



0

109



I I I VV

0

- t

x

0

0o1



mr~

0

14

8to~ 8cQ OQ't 8Izc 801 00,0 8091 BI, rf 62 t- 80. - oo 9

-10--19 OTII~d SX'Vo



-r-----'%-VW

0
4J

o o

E->

0

C-4

o )
o E

CQ-P

04,

%, -



C1

- >q
w-.

0
41'
u

916@ 090' 00rnr-4 96 9,'- 99'- GVP

JOJJH~ ~ ~ KI:D.a-4XV2

113
t



0
4-)

E.

0

4-)

U p

d

1144



0
4.)

E-.

8

E-1

115-

le- t.Ne' dl



4~S __

0
4.
4:

-v

-v
-4

S

4,

4. o
N (.44

.4,

>1
N
0

4~)
LI

dc/I

- 0..

*
'4- -

Cx.

41; ?
4~4

o

-C

(N
'-4

6 v
4,

-p

~ Es.

.1 6

I,

6

4.

S
4 §
- M

* 0
SLoe 09~L sitS ocwc ST9T 0000 5191- 0C9C- sits- ogzv.- stoe-

p
.4.... k', 0 b/~S/+~J) JOJJ UoT1.PJGIGDDV STXV-S

4.

*1I

116
'p
-A

?~.. At<J 4,r> .. ~: ttP..t :'.p s . Vt,> trtF'C c.V .A~ . .Av . . a -, - > -- -- .2* Z
4, *~ 4~ * %~ *%~%t,~t.%t:t%:%..%.r%.;t~trr.t ~- .A -.

- 4 a.~ a .. t. t.. .AZt



I I -

0

00

999* 9Z'T P68, Z9'0 EVO 00, TC*- Z9- 68, gzcT- 991

(;DS/;,9Sq~a~) .0.1I~a O~q2.1jaQ3 ST'V-

117



.41

4)

- .

0.
a 4 0

0

r-4

6091 0000 601- IZ'- ez~t- BC*'- 80-4

-10--12 OTII~d SXVL

118



* 0

.14

a

Q) I

-4%

144

I'el. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .2 O.ol C90.V 0* ZV g, 9'- 44- tTZ

-10-1:1 OIII~d SXVo

119



4.

>q

E-x

S0

0

Q)

0

34

19* 1 01 Z909S000 gc- Z9- 901 nl 91

0@@,) JO113 0111O'd SXV-

S~120



-~ ~-. w-. ~-. w'. .- w. .- ~ -v ~ TV.'.. VVW~JW'.'WVW.rv~ ~ Wi~VWWVWVWWVWVYW

F

-~

I.
p
F

o /
*q.

- x

~ >1

U
0

0
-4

S
o ~

4)

S

0)'

~

o
4)

0
-4

CL

o 4

V S

o .-.~

4) "S
S'S

~

o CL

-o ____

L6CT 9C~~T 9~.Oi OLLO egco 0000 6CC- 8W- 9LO 1- BCt T- L84. 1-

'a

a-

S
121

F
5-

*.*..-,-.-.*- .. *.*S%%'a*.



0

V) 4

-j

122

eS r 4



IT

U)

C

00* 4)* 8'- gz~- taa t'

-1-11 XIQ 0~AST'-

023



I~. -

%

0

x

('4

o

0

C-)

o

0

o ~

-4

* 0 CIli.~
'5-.

~
C .~ -
o

-4

0

d

0~'

o

V

0'

0 CL

§
N o

~tLL t6T9 g~9*t L8OC 9tSi 0000 9tST- L8O~- ~94- tST9- ~ /..-

.4'
'I

124



0

E-x

- 0

ci 41

o-

0i

940'8~~~~~~~ ~ ~ ~ ~ ~ ~ OW CI2O9c 911 000 11 c's **9 O-- 1O6

.10..1:q U0112.1ja;3V SXV)

125

.. .. . . . .N N %0. . - % .111.7'



*~00

Au

S 0

Q)

CQC

ciJ

% %



Biblioqraphv

1. Bierman, Gerald J. "Measurement Updating Using the U-D
Factorization." ProceVedings of the 197 CEE nference

on Decision ana Control, Houston, Tx (1975).

2. Barfield, Finley, AFTI/F-16 Automated Maneuvering and
Attack System Project Engineer. Personal interviews.
AFWAL/FIGX, Wright-Patterson AFB OH, February-May 1987.

3. Bryan, Ralph S. C Estimation f Tagets y
Multiple Aircraft. MS Thesis. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB
OH, June 1980 (ADA085799).

4. Maybeck, Peter S. Stochastic Models. Estimation. and
Contrl, Volume i. Academic Press, Inc., Orlando, 1979.

5. Maybeck, Peter S. Sohastic a Models. Estimation. and
Contrl.. Volume 2. Academic Press, Inc., Orlando, 1982.

6. Musick, Stanton H. SOFE.- Generalized Digital"
Siult o fQ.ptma Filter Evaluation, User's Manual,

Technical Report AFWAL-TR-80-1108, Avionics Laboratory,
Air Force Wright Aeronautical Laboratories,
Wright-Patterson AFB OH, October 1980.

7. Musick, Stanton H. and others. SOFEPL. A Plotting
Postprocessor f= QF. User's Manual. Technical Report
AFWAL-TR-80-1109, Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB OH,
October 1980.

8. Worsley, William H. Comasn 91 Three Extended Kalman
Filters forQ A- &ti=_ - TrackinG.. MS Thesis. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1980 (ADA094767).

9. Worsley, William H., Air Force Institute of Technology
(AFIT) Professor. Personal Interviews. AFIT/ENG,
Wright-Patterson AFB, OH., February-December 1987. "

10. - ...- Data Obtained From AFWAL/ADPO, Wright-Patterson
AFB, OH, February-December 1987.

127

-. r J P J



VI TA

Captain David L. Michalk was born on 12 November, 1957

in Woodland, California. He graduated from high school in

Kettle Falls, Washington, in 1975 and attended New Mexico

State University from 1976 to 1978. He Joined the Air Force

as an Airman Basic in June, 1979 and was assigned to duty at

the 55th Avionics Maintenance Squadron, Offutt AFB, Nebraska.

In 1981, he was selected for the Airman Education and

Commissioning Program and returned to New Mexico State

University. After graduation In may, 1983, he entered

Officer Training School at Lackland AFB, Texas. Upon

commissioning in August, 1983, he was assigned to the Air

Force Electronic warfare Center, Electronic Security Command,

until entering the School of Engineering, Air Force Institute

of Technology, in June, 1986.

Permanent address: 15025 Water Avenue

Visalia, California 93277

128

Z". I. % 10 01,\D. '



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-O188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a.'-.?.RITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
_ &I Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/87D-44

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIPCode)

Air Force Institue of Technology (PU)
Wright-Patterson AFB, Ohio, 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Flight Dynamics Laborator AFWAL/FIGX

8c. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Pir Force Wright Aeronautical PROGRAM PROJECT TASK WORK UNIT

Laborptories ELEMENT NO. NO. NO ACCESSION NO

_Wriht-Patterson AFB. Ohio. 45433-6583
11. fITLE (Include Security Classification)
IMPLEMENTATION OF A TARGET STATE ESTIMATOR FOR THE AIR--TO-AIR ATTACK MODE
OF THE AFTI/F-16

12. PERSONAL AUTHOR(S)

"id T_. MichaIk. P_ S E.E.. Cant- n . [ -In

13a 9 E OF REPORT 13b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
M, 'hesis FROM TO_ 1987 December I139

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Target State Estimation, Kalman Filters,

17 11 AFTI/F-16, Monte Carlo Method, Automatic Tracking
20 0

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Pdvsor: William H. Worsley, Major, USAF
Professor of Electrical Engineering

U1,11 AFR 193-V/.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[ NCLASSIFIED/UNLIMITED E0 SAME AS RPT , DTIC USERS UnclaSs ified

22?.-'ZME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
w..-.iam H. Worsley, Major, USPF (513) 255-2024 AFIT,ENG

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

% % %



UNCLASSIFIED

BLOCK 19 Continued

S

The purpose of this study was to investigate
target state estimation techniques for the air-to-air
mode of the AFTI/F-16 automated maneuvering and
attack system. The target state estimator (TSE)
previously developed would not perform to
specifications; possible reasons for this poor S
performance are presented as well as suggestions to
upgrade the performance.

This study focused on three areas: (1) Determine
if the Gauss-Markov dynamics model used in the
current TSE was adequate for the tracking accuracies
specified, (2) Determine-if a rotation had to be
performed to account for the states being expressed
in one frame while the measurements were physically
made in another. f'3) Determine-what effect the
conventional covariance updates, coupled with the
short (16-bit) wordlength of the TSE computers, has 0 5
on the stability of the Kalman filter.

Two filter dynamics models were designed,
tested, and compared. The first model used complex
equations and closely modeled an air-to-air
engagement. Most of the complexity of the model was
maintained in its Implementation, and it was used as
a baseline model. The second filter used a Gauss-
Markov dynamics model and made several assumptions to
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